sábado, 20 de junio de 2009

Los Agujeros Negros

El término agujero negro tiene un origen muy reciente. Fue acuñado en 1969 por el científico norteamericano John Wheeler como la descripción gráfica de una idea que se remonta hacia atrás un mínimo de doscientos años, a una época en que había dos teorías sobre la luz: una, preferida por Newton, que suponía que la luz estaba compuesta por partículas, y la otra que asumía que estaba formada por ondas. Hoy en día, sabemos que ambas teorías son correctas. Debido a la dualidad onda/corpúsculo de la mecánica cuántica, la luz puede ser considerada como una onda y como una partícula. En la teoría de que la luz estaba formada por ondas, no quedaba claro como respondería ésta ante la gravedad. Pero si la luz estaba compuesta por partículas, se podría esperar que éstas fueran afectadas por la gravedad del mismo modo que lo son las balas, los cohetes y los planetas. Al principio, se pensaba que las partículas de luz viajaban con infinita rapidez, de forma que la gravedad no hubiera sido capaz de frenarías, pero el descubrimiento de Roemer de que la luz viaja a una velocidad finita, significó el que la gravedad pudiera tener un efecto importante sobre la luz.
Bajo esta suposición, un catedrático de Cambridge, John Michell, escribió en 1783 un artículo en las Philosophical Transactions of the Royal Society of London en el que señalaba que una estrella que fuera suficientemente masiva y compacta tendría un campo gravitatorio tan intenso que la luz no podría escapar: la luz emitida desde la superficie de la estrella sería arrastrada de vuelta hacia el centro por la atracción gravitatoria de la estrella, antes de que pudiera llegar muy lejos. Michell sugirió que podría haber un gran número de estrellas de este tipo. A pesar de que no seríamos capaces de verlas porque su luz no nos alcanzaría, sí notaríamos su atracción gravitatoria. Estos objetos son los que hoy en día llamamos agujeros negros, ya que esto es precisamente lo que son: huecos negros en el espacio. Una sugerencia similar fue realizada unos pocos años después por el científico francés marqués de Laplace, parece ser que independientemente de Michell. Resulta bastante interesante que Laplace sólo incluyera esta idea en la primera y la segunda ediciones de su libro El sistema del mundo, y no la incluyera en las ediciones posteriores. Quizás decidió que se trataba de una idea disparatada. (Hay que tener en cuenta también que la teoría corpuscular de la luz cayó en desuso durante el siglo XIX; parecía que todo se podía explicar con la teoría ondulatoria, y, de acuerdo con ella, no estaba claro si la luz sería afectada por la gravedad.)
De hecho, no es realmente consistente tratar la luz como las balas en la teoría de la gravedad de Newton, porque la velocidad de la luz es fija. (Una bala disparada hacia arriba desde la Tierra se irá frenando debido a la gravedad y, finalmente, se parará y caerá; un fotón, sin embargo, debe continuar hacia arriba con velocidad constante. ¿Cómo puede entonces afectar la gravedad newtoniana a la luz?) No apareció una teoría consistente de cómo la gravedad afecta a la luz hasta que Einstein propuso la relatividad general, en 1915. E incluso entonces, tuvo que transcurrir mucho tiempo antes de que se comprendieran las implicaciones de la teoría con respecto a las estrellas masivas.
Para entender cómo se podría formar un agujero negro, tenemos que tener ciertos conocimientos acerca del ciclo vital de una estrella. Una estrella se forma cuando una gran cantidad de gas, principalmente hidrógeno, comienza a colapsar sobre sí mismo debido a su atracción gravitatoria. Conforme se contrae, sus átomos empiezan a colisionar entre sí, cada vez con mayor frecuencia y a mayores velocidades: el gas se calienta. Con el tiempo, el gas estará tan caliente que cuando los átomos de hidrógeno choquen ya no saldrán rebotados, sino que se fundirán formando helio. El calor desprendido por la reacción, que es como una explosión controlada de una bomba de hidrógeno, hace que la estrella brille. Este calor adicional también aumenta la presión del gas hasta que ésta es suficiente para equilibrar la atracción gravitatoria, y el gas deja de contraerse. Se parece en cierta medida a un globo. Existe un equilibrio entre la presión del aire de adentro, que trata de hacer que el globo se hinche, y la tensión de la goma, que trata de disminuir el tamaño del globo. Las estrellas permanecerán estables en esta forma por un largo período, con el calor de las reacciones nucleares equilibrando la atracción gravitatoria. Finalmente, sin embargo, la estrella consumirá todo su hidrógeno y los otros combustibles nucleares. Paradójicamente, cuanto más combustible posee una estrella al principio, más pronto se le acaba. Esto se debe a que cuanto más masiva es la estrella más caliente tiene que estar para contrarrestar la atracción gravitatoria, y, cuanto mas caliente está, más rápidamente utiliza su combustible. Nuestro Sol tiene probablemente suficiente combustible para otros cinco mil millones de años aproximadamente, pero estrellas más masivas pueden gastar todo su combustible en tan sólo cien millones de años, mucho menos que la edad del universo. Cuando una estrella se queda sin combustible, empieza a enfriarse y por lo tanto a contraerse. Lo que puede sucederle a partir de ese momento sólo se empezó a entender al final de los años veinte.
En 1928, un estudiante graduado indio, Subrahmanyan Chandrasekhar, se embarcó hacia Inglaterra para estudiar en Cambridge con el astrónomo británico sir Arthur Eddington, un experto en relatividad general. (Según algunas fuentes, un periodista le dijo a Eddington, al principio de los años veinte, que había oído que había sólo tres personas en el mundo que entendieran la relatividad general. Eddington hizo una pausa, y luego replicó: «Estoy tratando de pensar quién es la tercera persona».) Durante su viaje desde la India, Chandrasekhar calculó lo grande que podría llegar a ser una estrella que fuera capaz de soportar su propia gravedad, una vez que hubiera gastado todo su combustible. La idea era la siguiente: cuando la estrella se reduce en tamaño, las partículas materiales están muy cerca unas de otras, y así, de acuerdo con el principio de exclusión de Pauli, tienen que tener velocidades muy diferentes. Esto hace que se alejen unas de otras, lo que tiende a expandir a la estrella. Una estrella puede, por lo tanto, mantenerse con un radio constante, debido a un equilibrio entre la atracción de la gravedad y la repulsión que surge del principio de exclusión, de la misma manera que antes la gravedad era compensada por el calor.
Chandrasekhar se dio cuenta, sin embargo, de que existe un límite a la repulsión que el principio de exclusión puede proporcionar. La teoría de la relatividad limita la diferencia máxima entre las velocidades de las partículas materiales de la estrella a la velocidad de la luz. Esto significa que cuando la estrella fuera suficientemente densa, la repulsión debida al principio de exclusión sería menor que la atracción de la gravedad. Chandrasekhar calculó que una estrella fría de más de aproximadamente una vez y media la masa del Sol no sería capaz de soportar su propia gravedad. (A esta masa se le conoce hoy en día como el límite de Chandrasekhar.) Un descubrimiento similar fue realizado, casi al mismo tiempo, por el científico ruso Lev Davidovich Landau.
Todo esto tiene serias implicaciones en el destino último de las estrellas masivas. Si una estrella posee una masa menor que el límite de Chandrasekhar, puede finalmente cesar de contraerse y estabilizarse en un posible estado final, como una estrella «enana blanca», con un radio de unos pocos miles de kilómetros y una densidad de decenas de toneladas por centímetro cúbico. Una enana blanca se sostiene por la repulsión, debida al principio de exclusión entre los electrones de su materia. Se puede observar un gran número de estas estrellas enanas blancas; una de las primeras que se descubrieron fue una estrella que está girando alrededor de Sirio, la estrella más brillante en el cielo nocturno.
Landau señaló que existía otro posible estado final para una estrella, también con una masa límite de una o dos veces la masa del Sol, pero mucho más pequeña incluso que una enana blanca. Estas estrellas se mantendrían gracias a la repulsión debida al principio de exclusión entre neutrones y protones, en vez de entre electrones. Se les llamó por eso estrellas de neutrones. Tendrían un radio de unas diez millas aproximadamente y una densidad de cientos de millones de toneladas por pulgada cúbica. En la época en que fueron predichas, no había forma de poder observarlas; no fueron detectadas realmente hasta mucho después.
Estrellas con masas superiores al límite de Chandrasekhar tienen, por el contrario, un gran problema cuando se les acaba el combustible. En algunos casos consiguen explotar, o se las arreglan para desprenderse de la suficiente materia como para reducir su peso por debajo del límite y evitar así un catastrófico colapso gravitatorio; pero es difícil pensar que esto ocurra siempre, independientemente de lo grande que sea la estrella. ¿Cómo podría saber la estrella que tenía que perder peso? E incluso si todas las estrellas se las arreglaran para perder la masa suficiente como para evitar el colapso, ¿qué sucedería si se añadiera más masa a una enana blanca o a una estrella de neutrones, de manera que se sobrepasara el límite? ¿Se colapsaría alcanzando una densidad infinita? Eddington se asombró tanto por esta conclusión que rehusó creer en el resultado de Chandrasekhar. Pensó que era simplemente imposible que una estrella pudiera colapsarse y convertirse en un punto. Este fue el criterio de la mayoría de los científicos: el mismo Einstein escribió un artículo en el que sostenía que las estrellas no podrían encogerse hasta tener un tamaño nulo. La hostilidad de otros científicos, en particular de Eddington, su antiguo profesor y principal autoridad en la estructura de las estrellas, persuadió a Chandrasekhar de abandonar esta línea de trabajo y volver su atención hacia otros problemas de astronomía, tales como el movimiento de los grupos de estrellas. Sin embargo, cuando se le otorgó el premio Nobel en 1983, fue, al menos en parte, por sus primeros trabajos sobre la masa límite de las estrellas frías.
Chandrasekhar había demostrado que el principio de exclusión no podría detener el colapso de una estrella más masiva que el límite de Chandrasekhar, pero el problema de entender qué es lo que le sucedería a tal estrella, de acuerdo con la relatividad general, fue resuelto por primera vez por un joven norteamericano, Robert Oppenheimer, en 1939. Su resultado, sin embargo, sugería que no habría consecuencias observables que pudieran ser detectadas por un telescopio de su época. Entonces comenzó la Segunda Guerra Mundial y el propio Oppenheimer se vio involucrado en el proyecto de la bomba atómica. Después de la guerra, el problema del colapso gravitatorio fue ampliamente olvidado, ya que la mayoría de los científicos se vieron atrapados en el estudio de lo que sucede a escala atómica y nuclear. En los años sesenta, no obstante, el interés por los problemas de gran escala de la astronomía y la cosmología fue resucitado a causa del aumento en el número y categoría de las observaciones astronómicas, ocasionado por la aplicación de la tecnología moderna. El trabajo de Oppenheimer fue entonces redescubierto y adoptado por una cantidad de personas.
La imagen que tenemos hoy del trabajo de Oppenheimer es la siguiente: el campo gravitatorio de la estrella cambia los caminos de los rayos de luz en el espacio-tiempo, respecto de como hubieran sido si la estrella no hubiera estado presente. Los conos de luz, que indican los caminos seguidos en el espacio y en el tiempo por destellos luminosos emitidos desde sus vértices, se inclinan ligeramente hacia dentro cerca de la superficie de la estrella. Esto puede verse en la desviación de la luz, proveniente de estrellas distantes, observada durante un eclipse solar. Cuando la estrella se contrae, el campo gravitatorio en su superficie es más intenso y los conos de luz se inclinan más hacia dentro. Esto hace más difícil que la luz de la estrella escape, y la luz se muestra más débil y más roja para un observador lejano. Finalmente, cuando la estrella se ha reducido hasta un cierto radio crítico, el campo gravitatorio en la superficie llega a ser tan intenso, que los conos de luz se inclinan tanto hacia dentro que la luz ya no puede escapar Figura 6:1.



Figura 6:1



De acuerdo con la teoría de la relatividad, nada puede viajar más rápido que la luz. Así si la luz no puede escapar, tampoco lo puede hacer ningún otro objeto; todo es arrastrado por el campo gravitatorio. Por lo tanto, se tiene un conjunto de sucesos, una región del espacio-tiempo, desde donde no se puede escapar y alcanzar a un observador lejano. Esta región es lo que hoy en día llamamos un agujero negro. Su frontera se denomina el horizonte de sucesos y coincide con los caminos de los rayos luminosos que están justo a punto de escapar del agujero negro, pero no lo consiguen.
Para entender lo que se vería si uno observara cómo se colapsa una estrella para formar un agujero negro, hay que recordar que en la teoría de la relatividad no existe un tiempo absoluto. Cada observador tiene su propia medida del tiempo. El tiempo para alguien que esté en una estrella será diferente al de otra persona lejana, debido al campo gravitatorio de esa estrella. Supongamos que un intrépido astronauta, que estuviera situado en la superficie de una estrella que se colapsa, y se colapsara hacia dentro con ella, enviase una señal cada segundo, de acuerdo con su reloj, a su nave espacial que gira en órbita alrededor de la estrella. A cierta hora según su reloj, digamos que a las 11:00, la estrella se reduciría por debajo de su radio crítico, entonces el campo gravitatorio se haría tan intenso que nada podría escapar y las señales del astronauta ya no alcanzarían a la nave. Conforme se acercaran las 11:00, sus compañeros, que observaran desde la nave, encontrarían los intervalos entre señales sucesivas cada vez más largos, aunque dicho efecto sería muy pequeño antes de las 10:59:59. Sólo tendrían que esperar poco más de un segundo entre la señal del astronauta de las 10:59:58 y la que envió cuando en su reloj eran las 10:59:59; pero tendrían que esperar eternamente la señal de las 11:00. Las ondas luminosas emitidas desde la superficie de la estrella entre las 10:59:59 y las 11:00, según el reloj del astronauta, estarían extendidas a lo largo de un período infinito de tiempo, visto desde la nave. El intervalo de tiempo entre la llegada de ondas sucesivas a la nave se haría cada vez más largo, por eso la luz de la estrella llegaría cada vez más roja y más débil. Al final, la estrella sería tan oscura que ya no podría verse desde la nave: todo lo que quedaría sería un agujero negro en el espacio. La estrella continuaría, no obstante, ejerciendo la misma fuerza gravitatoria sobre la nave, que seguiría en órbita alrededor del agujero negro. Pero este supuesto no es totalmente realista, debido al problema siguiente. La gravedad se hace tanto más débil cuanto más se aleja uno de la estrella, así la fuerza gravitatoria sobre los pies de nuestro intrépido astronauta sería siempre mayor que sobre su cabeza. ¡Esta diferencia de las fuerzas estiraría a nuestro astronauta como un spaghetti o lo despedazaría antes de que la estrella se hubiera contraído hasta el radio crítico en que se forma el horizonte de sucesos! No obstante, se cree que existen objetos mayores en el universo que también pueden sufrir un colapso gravitatorio, y producir agujeros negros. Un astronauta situado encima de uno de estos objetos no sería despedazado antes de que se formara el agujero negro. De hecho, él no sentiría nada especial cuando alcanzara el radio crítico, y podría pasar el punto de no retorno sin notarlo. Sin embargo, a las pocas horas, mientras la región continuara colapsándose, la diferencia entre las fuerzas gravitatorias sobre su cabeza y sobre sus pies se haría tan intensa que de nuevo sería despedazado.
El trabajo que Roger Penrose y yo hicimos entre 1965 y 1970 demostró que, de acuerdo con la relatividad general, debe haber una singularidad de densidad y curvatura del espacio-tiempo infinitas dentro de un agujero negro. La situación es parecida al big bang al principio del tiempo, sólo que sería el final, en vez del principio del tiempo, para el cuerpo que se colapsa y para el astronauta. En esta singularidad, tanto las leyes de la ciencia como nuestra capacidad de predecir el futuro fallarían totalmente. No obstante, cualquier observador que permaneciera fuera del agujero negro no estaría afectado por este fallo de capacidad de predicción, porque ni la luz ni cualquier otra señal podrían alcanzarle desde la singularidad. Este hecho notable llevó a Roger Penrose a proponer la hipótesis de la censura cósmica, que podría parafrasearse como «Dios detesta una singularidad desnuda». En otras palabras, las singularidades producidas por un colapso gravitatorio sólo ocurren en sitios, como los agujeros negros, en donde están decentemente ocultas por medio de un horizonte de sucesos, para no ser vistas desde fuera. Estrictamente, esto es lo que se conoce como la hipótesis débil de la censura cósmica: protege a los observadores que se quedan fuera del agujero negro de las consecuencias de la crisis de predicción que ocurre en la singularidad, pero no hace nada por el pobre desafortunado astronauta que cae en el agujero.
Existen algunas soluciones de las ecuaciones de la relatividad general en las que le es posible al astronauta ver una singularidad desnuda: él puede evitar chocar con la singularidad y, en vez de esto, caer a través de un wormhole (agujero de gusano), para salir en otra región del universo. Esto ofrecería grandes posibilidades de viajar en el espacio y en el tiempo, aunque desafortunadamente parece ser que estas soluciones son altamente inestables; la menor perturbación, como, por ejemplo, la presencia del astronauta, puede cambiarlas, de forma que el astronauta podría no ver la singularidad hasta que chocara con ella, momento en el que encontraría su final. En otras palabras, la singularidad siempre estaría en su futuro y nunca en su pasado. La versión fuerte de la hipótesis de la censura cósmica nos dice que las singularidades siempre estarán, o bien enteramente en el futuro, como las singularidades de colapsos gravitatorios, o bien enteramente en el pasado, como el big bang. Yo creo fuertemente en la censura cósmica por lo cual le aposté a Kip Thorne y John Preskill de Cal Tech que siempre se mantendría. Perdí la apuesta por un tecnicismo, porque se produjeron ejemplos de soluciones en que una singularidad era visible desde muy larga distancia. Así que tuve que pagar, lo cual de acuerdo con los términos de la apuesta significaba que tuve que cubrir su desnudez. Pero puedo reclamar una victoria moral. Las singularidades desnudas eran inestables: la menor perturbación podría causar que o bien desaparecieran o bien se ocultaran detrás de un horizonte de eventos. Por lo tanto no podrían ocurrir en situaciones reales. Es muy probable que se verifique alguna de las versiones de la censura cósmica, porque cerca de singularidades desnudas puede ser posible viajar al pasado. Aunque esto sería atractivo para los escritores de ciencia ficción, significaría que nuestras vidas nunca estarían a salvo: ¡alguien podría volver al pasado y matar a tu padre o a tu madre antes de que hubieras sido concebido!
El horizonte de sucesos, la frontera de la región del espacio-tiempo desde la que no es posible escapar, actúa como una membrana unidireccional alrededor del agujero negro: los objetos, tales como astronautas imprudentes, pueden caer en el agujero negro a través del horizonte de sucesos, pero nada puede escapar del agujero negro a través del horizonte de sucesos. (Recordemos que el horizonte de sucesos es el camino en el espacio-tiempo de la luz que está tratando de escapar del agujero negro, y nada puede viajar más rápido que la luz.) Uno podría decir del horizonte de sucesos lo que el poeta Dante dijo a la entrada del infierno: «Perded toda esperanza al traspasarme». Cualquier cosa o persona que cae a través del horizonte de sucesos pronto alcanzará la región de densidad infinita y el final del tiempo.
La relatividad general predice que los objetos pesados en movimiento producirán la emisión de ondas gravitatorias, rizos en la curvatura del espacio que viajan a la velocidad de la luz. Dichas ondas son similares a las ondas luminosas, que son rizos del campo electromagnético, pero mucho más difíciles de detectar. Pueden ser observadas por el muy ligero cambio en la separación que producen entre objetos vecinos que se mueven libremente. Una cantidad de detectores se están construyendo en los Estados Unidos, Europa, y Japón que podrán medir desplazamientos de una parte en mil millones de millones de millones (uno y veintiún ceros a la derecha), o menos que el núcleo de un átomo sobre una distancia de diez millas.
Al igual que la luz, se llevan consigo energía de los objetos que las emiten. Uno esperaría, por lo tanto, que un sistema de objetos masivos se estabilizara finalmente en un estado estacionario, ya que la energía de cualquier movimiento se perdería en la emisión de ondas gravitatorias. (Es parecido a dejar caer un corcho en el agua: al principio se mueve bruscamente hacia arriba y hacia abajo, pero cuando las olas se llevan su energía, se queda finalmente en un estado estacionario.) Por ejemplo, el movimiento de la Tierra en su órbita alrededor del Sol produce ondas gravitatorias. El efecto de la pérdida de energía será cambiar la órbita de la Tierra, de forma que gradualmente se irá acercando cada vez más al Sol; con el tiempo colisionará con él, y se quedará en un estado estacionario. El ritmo de pérdida de energía en el caso de la Tierra y el Sol es muy lento, aproximadamente el suficiente para hacer funcionar un pequeño calentador eléctrico. ¡Esto significa que la Tierra tardará unos mil billones de billones de años en chocar con el Sol, por lo que no existe un motivo inmediato de preocupación! El cambio en la órbita de la Tierra es demasiado pequeño para ser observado, pero el mismo efecto ha sido detectado durante los últimos años en el sistema llamado PSR 1913+16 (PSR se refiere a «pulsar», un tipo especial de estrella de neutrones que emite pulsos regulares de ondas de radio). Este sistema contiene dos estrellas de neutrones girando una alrededor de la otra; la energía que están perdiendo, debido a la emisión de ondas gravitatorias, les hace girar entre sí en espiral. Esta confirmación de la relatividad general les valió a J. H. Taylor y R. A. Hulse el Premio Nobel en 1993. Les tomaría alrededor de trescientos millones de años colisionar. Justo antes de hacerlo, estarían orbitando tan rápido que emitirían suficientes ondas gravitacionales para que detectores como LIGO las capten.
Durante el colapso gravitatorio de una estrella para formar un agujero negro, los movimientos serían mucho más rápidos, por lo que el ritmo de emisión de energía sería mucho mayor. Así pues, no se tardaría demasiado en llegar a un estado estacionario. ¿Qué parecería este estado final? Se podría suponer que dependería de todas las complejas características de la estrella de la que se ha formado. No sólo de una masa y velocidad de giro, sino también de las diferentes densidades de las distintas partes en ella, y de los complicados movimientos de los gases en su interior. Y si los agujeros negros fueran tan complicados como los objetos que se colapsan para formarlos, podría ser muy difícil realizar cualquier predicción sobre agujeros negros en general.
En 1967, sin embargo, el estudio de los agujeros negros fue revolucionado por Werner Israel, un científico canadiense (que nació en Berlín, creció en Sudáfrica, y obtuvo el título de doctor en Irlanda). Israel demostró que, de acuerdo con la relatividad general, los agujeros negros sin rotación debían ser muy simples; eran perfectamente esféricos, su tamaño sólo dependía de su masa, y dos agujeros negros cualesquiera con la misma masa serían idénticos. De hecho, podrían ser descritos por una solución particular de las ecuaciones de Einstein, solución conocida desde 1917, hallada gracias a Karl Schwarzschild al poco tiempo del descubrimiento de la relatividad general. Al principio, mucha gente, incluido el propio Israel, argumentó que puesto que un agujero negro tenía que ser perfectamente esférico, sólo podría formarse del colapso de un objeto perfectamente esférico. Cualquier estrella real, que nunca sería perfectamente esférica, sólo podría por lo tanto colapsarse formando una singularidad desnuda.
Hubo, sin embargo, una interpretación diferente del resultado de Israel, defendida, en particular, por Roger Penrose y John Wheeler. Ellos argumentaron que los rápidos movimientos involucrados en el colapso de una estrella implicarían que las ondas gravitatorias que desprendiera la harían siempre más esférica, y para cuando se hubiera asentado en un estado estacionario sería perfectamente esférica. De acuerdo con este punto de vista, cualquier estrella sin rotación, independientemente de lo complicado de su forma y de su estructura interna, acabaría después de un colapso gravitatorio siendo un agujero negro perfectamente esférico, cuyo tamaño dependería únicamente de su masa. Cálculos posteriores apoyaron este punto de vista, que pronto fue adoptado de manera general.
El resultado de Israel sólo se aplicaba al caso de agujeros negros formados a partir de cuerpos sin rotación. En 1963, Roy Kerr, un neozelandés, encontró un conjunto de soluciones a las ecuaciones de la relatividad general que describían agujeros negros en rotación. Estos agujeros negros de «Kerr» giran a un ritmo constante, y su tamaño y forma sólo dependen de su masa y de su velocidad de rotación. Si la rotación es nula, el agujero negro es perfectamente redondo y la solución es idéntica a la de Schwarzschild. Si la rotación no es cero, el agujero negro se deforma hacia fuera cerca de su ecuador tal como la Tierra o el Sol se achatan en los polos debido a su rotación), y cuanto más rápido gira, más se deforma. De este modo, al extender el resultado de Israel para poder incluir a los cuerpos en rotación, se conjeturó que cualquier cuerpo en rotación, que colapsara y formara un agujero negro, llegaría finalmente a un estado estacionario descrito por la solución de Kerr. En 1970, un colega y alumno mío de investigación en Cambridge, Brandon Carter, dio el primer paso para la demostración de la anterior conjetura. Probó que, con tal de que un agujero negro rotando de manera estacionaria tuviera un eje de simetría, como una peonza, su tamaño y su forma sólo dependerían de su masa y de la velocidad de rotación. Luego, en 1971, yo demostré que cualquier agujero negro rotando de manera estacionaria siempre tendría un eje de simetría. Finalmente, en 1973, David Robinson, del Kings College de Londres, usó el resultado de Carter y el mío para demostrar que la conjetura era correcta: dicho agujero negro tiene que ser verdaderamente la solución de Kerr. Así, después de un colapso gravitatorio, un agujero negro se debe asentar en un estado en el que puede rotar, pero no puede tener pulsaciones [es decir, aumentos y disminuciones periódicas de su tamaño]. Además, su tamaño y forma sólo dependerán de su masa y velocidad de rotación, y no de la naturaleza del cuerpo que lo ha generado mediante su colapso. Este resultado se dio a conocer con la frase: «un agujero negro no tiene pelo». El teorema de la «no existencia de pelo» es de gran importancia práctica, porque restringe fuertemente los tipos posibles de agujeros negros. Se pueden hacer, por lo tanto, modelos detallados de objetos que podrían contener agujeros negros, y comparar las predicciones de estos modelos con las observaciones. También implica que una gran cantidad de información sobre el cuerpo colapsado se debe perder cuando se forma el agujero negro, porque después de ello, todo lo que se puede medir del cuerpo es la masa y la velocidad de rotación. El significado de todo esto se verá en el próximo capítulo.
Los agujeros negros son un caso, entre unos pocos en la historia de la ciencia, en el que la teoría se desarrolla en gran detalle como un modelo matemático, antes de que haya ninguna evidencia a través de las observaciones de que aquélla es correcta. En realidad, esto constituía el principal argumento de los oponentes de los agujeros negros: ¿cómo podría uno creer en objetos cuya única evidencia eran cálculos basados en la dudosa teoría de la relatividad general? En 1963, sin embargo, Maarten Schmidt, un astrónomo del observatorio Monte Palomar de California, midió el corrimiento hacia el rojo de un débil objeto parecido a una estrella, situado en la dirección de la fuente de ondas de radio llamada 3C273 (es decir, fuente número 273 del tercer catálogo de Cambridge de fuentes de radio). Encontró que dicho corrimiento era demasiado grande para ser causado por un campo gravitatorio: si hubiera sido un corrimiento hacia el rojo de origen gravitatorio, el objeto tendría que haber sido tan masivo y tan cercano a nosotros que habría perturbado las órbitas de los planetas del sistema solar. Esto indujo a pensar que el corrimiento hacia el rojo fue causado, en vez de por la gravedad, por la expansión del universo, lo que, a su vez, implicaba que el objeto estaba muy lejos. Y para ser visible a tan gran distancia, el objeto debería ser muy brillante, debería, en otras palabras, emitir una enorme cantidad de energía. El único mecanismo que se podía pensar que produjera tales cantidades de energía parecía ser el colapso gravitatorio, no ya de una estrella, sino de toda una región central de una galaxia. Cierto número de otros «objetos cuasiestelares», o quasars, similares han sido descubiertos, todos con grandes corrimientos hacia el rojo. Pero todos están demasiado lejos y, por lo tanto, son demasiado difíciles de observar para que puedan proporcionar evidencias concluyentes acerca de los agujeros negros.
Nuevos estímulos sobre la existencia de agujeros negros llegaron en 1967 con el descubrimiento, por un estudiante de investigación de Cambridge, Jocelyn Bell, de objetos celestes que emitían pulsos regulares de ondas de radio. Al principio, Bell y su director de tesis, Antony Hewish, ¡pensaron que podrían haber establecido contacto con una civilización extraterrestre de la galaxia! En verdad, recuerdo que, en el seminario en el que anunciaron su descubrimiento, denominaron a las primeras cuatro fuentes encontradas LGM 1-4, LGM quería decir «Little Green Men» [hombrecillos verdes]. Al final, sin embargo, ellos y el resto de científicos llegaron a la conclusión menos romántica de que estos objetos, a los que se les dio el nombre de pulsars, eran de hecho estrellas de neutrones en rotación, que emitían pulsos de ondas de radio debido a una complicada interacción entre sus campos magnéticos y la materia de su alrededor. Fueron malas noticias para los escritores de westerns espaciales, pero muy esperanzadoras para el pequeño grupo de los que creíamos en agujeros negros en aquella época: fue la primera evidencia positiva de que las estrellas de neutrones existían. Una estrella de neutrones posee un radio de unas diez millas, sólo una pequeña cantidad de veces el radio crítico en que una estrella se convierte en un agujero negro. Si una estrella podía colapsarse hasta un tamaño tan pequeño, no era ilógico esperar que otras estrellas pudieran colapsar a tamaños incluso menores y se convirtieran en agujeros negros.
¿Cómo podríamos esperar que se detectase un agujero negro, si por su propia definición no emite ninguna luz? Podría parecer algo similar a buscar un gato negro en un sótano lleno de carbón. Afortunadamente, hay una manera. Como John Michell señaló en su artículo pionero de 1783, un agujero negro sigue ejerciendo una fuerza gravitatoria sobre los objetos cercanos. Los astrónomos han observado muchos sistemas en los que dos estrellas giran en órbita una alrededor de la otra, atraídas entre sí por la gravedad. También observan sistemas en los que sólo existe una estrella visible que está girando alrededor de algún compañero invisible. No se puede, desde luego, llegar a la conclusión de que el compañero es un agujero negro: podría ser simplemente una estrella que es demasiado débil para ser vista. Sin embargo, algunos de estos sistemas, como el llamado Cygnus X-1 Figura 6:2, también son fuentes intensas de rayos X.








Figura 6:2


La mejor explicación de este fenómeno es que se está quitando materia de la superficie de la estrella visible. Cuando esta materia cae hacia el compañero invisible, desarrolla un movimiento espiral (parecido al movimiento del agua cuando se vacía una bañera), y adquiere una temperatura muy alta, emitiendo rayos X Figura 6:3.


Figura 6:3

Para que este mecanismo funcione, el objeto invisible tiene que ser pequeño, como una enana blanca, una estrella de neutrones o un agujero negro. A partir de la órbita observada de la estrella visible, se puede determinar la masa más pequeña posible del objeto invisible. En el caso de Cygnus X-1, ésta es de unas seis veces la masa del Sol, lo que, de acuerdo con el resultado de Chandrasekhar, es demasiado grande para que el objeto invisible sea una enana blanca. También es una masa demasiado grande para ser una estrella de neutrones. Parece, por lo tanto, que se trata de un agujero negro.
Existen otros modelos para explicar Cygnus X-1, que no incluyen un agujero negro, pero todos son bastante inverosímiles. Un agujero negro parece ser la única explicación realmente natural de las observaciones. A pesar de ello, le aposté a Kip Thorne, del Instituto Tecnológico de California, ¡que de hecho Cygnus X-1 no contiene ningún agujero negro! Se trataba de una especie de póliza de seguros para mí. He realizado una gran cantidad de trabajos sobre agujeros negros, y estaría todo perdido si resultara que los agujeros negros no existen. Pero en este caso, tendría el consuelo de ganar la apuesta, que me proporcionaría recibir la revista Private Eye durante cuatro años. De hecho, aunque la situación con Cygnus x-1 no ha cambiado mucho desde que hicimos la apuesta en 1975, hay ahora tantas otras evidencias observacionales en favor de los agujeros negros que he concedido la apuesta. Pagué lo especificado que era una suscripción a la revista Penthouse durante un año, ultrajando a la liberada esposa de Kip.
En la actualidad tenemos también evidencias de otros agujeros negros en sistemas como el de Cygnus X-1 en nuestra galaxia y en dos galaxias vecinas llamadas las Nubes de Magallanes. El número de agujeros negros es, no obstante, casi con toda certeza muchísimo mayor; en la larga historia del universo, muchas estrellas deben haber consumido todo su combustible nuclear, por lo que habrán tenido que colapsarse. El número de agujeros negros podría ser incluso mayor que el número de estrellas visibles, que contabiliza un total de unos cien mil millones sólo en nuestra galaxia. La atracción gravitatoria extra de un número tan grande de agujeros negros podría explicar por qué nuestra galaxia gira a la velocidad con que lo hace: la masa de las estrellas visibles es insuficiente para explicarlo. También tenemos alguna evidencia de que existe un agujero negro mucho mayor, con una masa de aproximadamente cien mil veces la del Sol, en el centro de nuestra galaxia. Las estrellas de la galaxia que se acerquen demasiado a este agujero negro serán hechas añicos por la diferencia entre las fuerzas gravitatorias en los extremos más lejano y cercano. Sus restos, y el gas que es barrido de las otras estrellas, caerán hacia el agujero negro. Como en el caso de Cygnus X-1, el gas se moverá en espiral hacia dentro y se calentará, aunque no tanto como en aquel caso. No se calentará lo suficiente como para emitir rayos X, pero sí que podría ser una explicación de la fuente enormemente compacta de ondas de radio y de rayos infrarrojos que se observa en el centro de la galaxia.
Se piensa que agujeros negros similares, pero más grandes, con masas de unos cien millones de veces la del Sol, existen en el centro de los quasars. La materia que cae en dichos agujeros negros supermasivos proporcionaría la única fuente de potencia lo suficientemente grande como para explicar las enormes cantidades de energía que estos objetos emiten. Cuando la materia cayera en espiral hacia el agujero negro, haría girar a éste en la misma dirección, haciendo que desarrollara un campo magnético parecido al de la Tierra. Partículas de altísimas energías se generarían cerca del agujero negro a causa de la materia que caería. El campo magnético sería tan intenso que podría enfocar a esas partículas en chorros inyectados hacia fuera, a lo largo del eje de rotación del agujero negro, en las direcciones de sus polos norte y sur. Tales chorros son verdaderamente observados en cierto número de galaxias y quasars. También se puede considerar la posibilidad de que pueda haber agujeros negros con masas mucho menores que la del Sol. Estos agujeros negros no podrían formarse por un colapso gravitatorio, ya que sus masas están por debajo del límite de Chandrasekhar: estrellas de tan poca masa pueden sostenerse a sí mismas contra la fuerza de la gravedad, incluso cuando hayan consumido todo su combustible nuclear. Agujeros negros de poca masa sólo se podrían formar si la materia fuera comprimida a enorme densidad por grandes presiones externas. Tales condiciones podrían ocurrir en una bomba de hidrógeno grandísima: el físico John Wheeler calculó una vez que si se tomara toda el agua pesada de todos los océanos del mundo, se podría construir una bomba de hidrógeno que comprimiría tanto la materia en el centro que se formaría un agujero negro. (¡Desde luego, no quedaría nadie para poderlo observar!) Una posibilidad más práctica es que tales agujeros de poca masa podrían haberse formado en las altas temperaturas y presiones del universo en una fase muy inicial. Los agujeros negros se habrían formado únicamente si el universo inicialmente no hubiera sido liso y uniforme, porque sólo una pequeña región que fuera más densa que la media podría ser comprimida de esta manera para formar un agujero negro. Pero se sabe que deben haber existido algunas irregularidades, porque de lo contrario, hoy en día, la materia en el universo aún estaría distribuida de forma perfectamente uniforme, en vez de estar agrupada formando estrellas y galaxias.
El que las irregularidades requeridas para explicar la existencia de las estrellas y de las galaxias hubieran sido suficientes, o no, para la formación de un número significativo de agujeros negros «primitivos», depende claramente de las condiciones del universo primitivo. Así, si pudiéramos determinar cuántos agujeros negros primitivos existen en la actualidad, aprenderíamos una enorme cantidad de cosas sobre las primeras etapas del universo. Agujeros negros primitivos con masas de más de mil millones de toneladas (la masa de una montaña grande) sólo podrían ser detectados por su influencia gravitatoria sobre la materia visible, o en la expansión del universo. Sin embargo, como aprenderemos en el siguiente capítulo, los agujeros negros no son realmente negros después de todo: irradian como un cuerpo caliente, y cuanto más pequeños son más irradian. Así, paradójicamente, ¡los agujeros negros más pequeños podrían realmente resultar más fáciles de detectar que los grandes!




Bibliografia:Breve Historia del Tiempo-Stephen Hawking

Nuestra Imagen del Universo

Un conocido científico (algunos dicen que Bertrand Russell) dio una vez una conferencia sobre astronomía. El describió como la Tierra orbita alrededor del Sol y como el Sol, a su vez, orbita alrededor del centro de una vasta colección de estrellas llamada nuestra galaxia. Al final de la conferencia, una pequeña anciana sentada en el fondo de la sala se paró y dijo: "Lo que usted ha dicho es una mierda. El mundo es en realidad un plato plano sobre el lomo de una tortuga gigante." El científico sonrió despectivamente y replicó: "¿y sobre qué está la tortuga?" "Usted es muy inteligente, jovencito, muy inteligente," dijo la pequeña anciana "¡pero hay infinitas tortugas!"
Mucha gente podría encontrar bastante ridícula la imagen de nuestro universo como una torre de infinitas tortugas, pero ¿por qué pensamos que lo sabemos mejor? ¿qué sabemos acerca del universo y cómo lo sabemos? ¿de dónde vino el universo y hacia dónde va? ¿Tuvo el universo un comienzo, y si es así, que sucedió antes de eso? ¿cuál es la naturaleza del tiempo? ¿tendrá un final? ¿podemos ir atrás en el tiempo? Recientes descubrimientos en física hacen posible, en parte por fantásticas nuevas tecnologías, sugerir respuestas a algunas de estas antiguas preguntas. Algún día estas respuestas nos parecerán tan obvias como la Tierra orbitando al Sol -o tal vez tan ridículas como una torre de tortugas- sólo el tiempo (lo que quiera que sea) lo dirá.
En el año 340 AC el filósofo griego Aristóteles, en su libro Sobre los Cielos, fue capaz de proponer dos buenos argumentos para creer que la Tierra era una esfera redonda en lugar de un plato plano. Primero, él se dio cuenta de que los eclipses de Luna eran causados por la Tierra que se ponía entre el Sol y la Luna. La sombra de la Tierra sobre la Luna era siempre redonda, lo cual podía suceder sólo si la Tierra era esférica. Si la Tierra hubiera sido un disco plano, la sombra hubiera sido elongada y elíptica a menos que el Sol siempre estuviera sobre el eje del disco cuando ocurrían los eclipses. Segundo, los griegos sabían por sus viajes que la Estrella del Norte aparecía más baja en el cielo vista desde el sur que si la miraban en regiones del norte (dado que la Estrella del Norte está sobre el Polo Norte aparece sobre la cabeza de alguien en el Polo Norte y se ve en el horizonte desde el ecuador) De la diferencia entre la posición aparente de la Estrella del Norte en Egipto y Grecia. Aristóteles inclusive calculó estimativamente que la distancia alrededor de la Tierra era de 400.000 estadios. No se sabe exactamente cuánto medía un estadio, pero debe haber tenido alrededor de 200 yardas lo cual hace que Aristóteles estimara el doble de la figura corrientemente aceptada. Los griegos también tenían un tercer argumento de que la Tierra debía ser redonda. ¿Por qué sino, cuando aparece un barco desde detrás del horizonte, vemos primero las velas y sólo más tarde el casco?
Aristóteles pensaba que la Tierra estaba quieta y que el Sol, la Luna, los planetas y las estrellas se movían en órbitas circulares alrededor de la Tierra. El creía esto porque él sentía, por razones místicas, que la Tierra era el centro del universo, y que el movimiento circular era el más perfecto. Esta idea fue elaborada por Tolomeo en el segundo siglo AC en un completo modelo cosmológico. La tierra permanecía en el centro, rodeada por ocho esferas de cristal sobre las que giraban la Luna, el Sol, las estrellas y los cinco planetas que se conocían, Mercurio, Venus, Marte, Júpiter y Saturno.






Los planetas mismos se movían en pequeños círculos dentro de sus respectivas esferas para justificar el complicado camino que describían en el cielo. La esfera más lejana portaba las estrellas fijas que se mantenían a la misma distancia entre sí pero giraban juntas alrededor de la Tierra. Nunca quedó muy claro lo que había después de la última esfera, pero ciertamente no era parte del universo observable por la humanidad.
El modelo de Tolomeo era un sistema razonablemente preciso para predecir la posición de los cuerpos celestes en el cielo. Pero, para calcular estas posiciones con precisión, Tolomeo tuvo que asumir que la Luna se movía en un camino que algunas veces la llevaba dos veces más cerca de la Tierra que en otras veces. ¡Esto significaba que la Luna debía aparecer dos veces más grande algunas veces que otras! Tolomeo reconoció este desperfecto, pero nunca su modelo fue generalmente, ya que no universalmente, aceptado. Este fue aceptado por la iglesia Cristiana como la imagen del universo que estaba en concordancia con las escrituras y que tenía la ventaja de dejar un gran espacio después de la esfera de las estrellas fijas para el cielo y el infierno.
Un modelo más simple, sin embargo, fue propuesto en 1514 por un cura polaco, Nicolás Copérnico, (Al principio, tal vez por miedo de ser marcado como hereje por su iglesia, Copérnico difundió su modelo anónimamente.) Su idea fue que el Sol estaba fijo en el centro y que la Tierra y los planetas se movían en órbitas circulares alrededor del Sol. Pasó cerca de un siglo antes de que esta idea fuera tomada en serio. Entonces dos astrónomos -el alemán Johannes Kepler y el italiano Galileo Galilei- comenzaron a apoyar públicamente la teoría copernicana, a despecho de que las órbitas que predecía no coincidían con las que se observaban. La muerte final de la teoría de Aristóteles y Tolomeo llegó en 1609. En ese año, Galileo comenzó a observar el cielo nocturno con un telescopio, que recién se había inventado. Cuando miró al planeta Júpiter, Galileo observó que estaba acompañado por varios pequeños satélites o lunas que orbitaban alrededor de él. Esto implicaba que no todo tenía que orbitar directamente alrededor de la Tierra, como Aristóteles y Tolomeo pensaban. (Por supuesto, todavía era posible creer que la Tierra estaba estacionaria en el centro del universo y que las lunas de Júpiter se movían en extremadamente complicadas trayectorias alrededor de la Tierra, dando la impresión de que orbitaban Júpiter. Sin embargo, la teoría de Copérnico era mucho más simple) Al mismo tiempo, Johannes Kepler había modificado la teoría de Copérnico, sugiriendo que los planetas no se movían en círculos sino en elipses (una elipse es un círculo alargado). Las predicciones ahora finalmente coincidían con las observaciones.
Por lo que a Kepler le concernía, las órbitas elípticas eran meramente una hipótesis ad hoc, y una que era bastante repugnante, porque las elipses eran claramente menos perfectas que los círculos. Habiendo descubierto casi por accidente que las órbitas elípticas coincidían con las observaciones, él no podía reconciliarlas con su idea de que fuerzas magnéticas hacían orbitar los planetas alrededor del Sol. Una explicación fue dada mucho más tarde, en 1687, cuando Sir Isaac Newton publicó su Philosophiae Naturalis Principia Mathematica probablemente la obra más importante que se haya publicado en las ciencias físicas. En ella Newton no sólo promovió una teoría de como se mueven los cuerpos en el espacio y el tiempo, sino que también desarrolló las complicadas matemáticas necesarias para analizar dichos movimientos. Además Newton postuló una ley de la gravitación universal de acuerdo a la cual cada cuerpo del universo era atraído hacia los demás cuerpos por una fuerza que era más fuerte cuanto más masa tuvieran los cuerpos y cuanto más cerca estuvieran uno del otro. Era esta misma fuerza la que provocaba que los objetos cayeran al suelo. (El cuento de que Newton se inspiró en una manzana que cayó sobre su cabeza es casi con certeza apócrifo. Todo lo que Newton mismo dijo fue que la idea de la gravedad le vino cuando él estaba sentado en "estado de contemplación" y "fue ocasionada por la caída de una manzana.") Newton vino a demostrar que, de acuerdo a su ley, la gravedad causa que la Luna se mueva en una órbita elíptica en torno a la Tierra y causa que la Tierra y los demás planetas se muevan en órbitas elípticas alrededor del Sol.
El modelo Copernicano fue despojado de las esferas celestiales de Tolomeo, y con ello de la idea de que el universo tiene un límite natural. Dado que las "estrellas fijas" no aparentan cambiar sus posiciones fuera de una rotación a través del cielo causada por el giro de la Tierra sobre su eje, se volvió natural suponer que las estrellas fijas eran objetos como nuestro Sol pero mucho más lejanos.
Newton comprendió que, de acuerdo a su teoría de la gravedad, las estrellas deberían atraerse una hacia otra, por lo tanto parecía que no podían permanecer esencialmente sin movimiento. ¿No podrían caer todas juntas hacia algún punto? En una carta de 1691 a Richard Bentley, otro pensador líder de esa época, Newton arguyó que esto podría en verdad ocurrir si hubiera un número finito de estrellas distribuidas en una región finita del espacio. Pero él razonaba que si, por otra parte, hubiera un número infinito de estrellas distribuidas más o menos uniformemente sobre un universo infinito, esto podría no ocurrir, porque no habría un punto central hacia el cual caer.
Este argumento es un ejemplo de las trampas en que se puede caer cuando se habla del infinito. En un universo infinito, cada punto puede ser visto como el centro, porque cada punto tiene un número infinito de estrellas de cada lado. El planteo correcto, que fue realizado mucho más tarde, es considerar la situación finita en la cual todas las estrellas caen una sobre otra, y entonces preguntar cómo cambiarían las cosas si se agregan más estrellas distribuidas de forma casi uniforme fuera de esta región. De acuerdo a las leyes de Newton las estrellas extra no harían ninguna diferencia, así que las estrellas caerían del mismo modo. Podemos agregar tantas estrellas como queramos, pero siempre caerán una sobre otra. Ahora sabemos que es imposible tener un modelo estático infinito del universo en el cual la gravedad sea siempre atractiva.
Una interesante reflexión sobre el clima general de pensamiento antes del siglo XX es que nadie había sugerido que el universo se estuviera expandiendo o contrayendo. Era generalmente aceptado que o bien el universo había existido siempre en un estado inmutable, o bien que había sido creado hace un tiempo finito en el pasado más o menos como lo observamos hoy en día. En parte esto debe haberse debido a la tendencia de la gente a creer en verdades eternas, así como al confort que encontraban al pensar que aunque ellos tuvieran que envejecer y morir, el universo es eterno e inmutable.
Inclusive aquellos que advertían que la teoría de Newton de la gravedad mostraba que el universo no podía ser estático no pensaron en sugerir que podría estarse expandiendo. En su lugar, intentaron modificar la teoría haciendo que la fuerza de gravedad fuera repulsiva a muy largas distancias. Esto no afectaba significativamente sus predicciones del movimiento de los planetas, pero permitía que una distribución de estrellas infinita permaneciera en equilibrio - con las fuerzas atractivas entre estrellas cercanas balanceada por las fuerzas repulsivas de las estrellas más lejanas. Sin embargo, ahora creemos que tal equilibrio podría ser inestable: si las estrellas en alguna región se acercaran sólo un poco una a la otra, las fuerzas atractivas entre ellas podrían volverse más fuertes y dominar sobre las fuerzas repulsivas de modo que las estrellas seguirían cayendo una sobre la otra. Por otra parte, si las estrellas se alejaran un poco una de otra, las fuerzas repulsivas podrían dominar y alejarlas cada vez más.
Otra objeción a un universo infinito estático es normalmente atribuida al filósofo alemán Heinrich Olbers, quien escribió sobre su teoría en 1823. En efecto, varios contemporáneos de Newton habían visto el problema, y el artículo de Olbers no fue el primero en contener argumentos plausibles contra él. Fue, sin embargo, el primero en ser ampliamente notado. La dificultad es que en un universo infinito estático casi cualquier línea de visión terminaría en la superficie de una estrella. Luego uno podría esperar que todo el cielo pudiera ser tan brillante como el Sol, inclusive de noche. El contra argumento de Olbers era que la luz de las estrellas lejanas estaría oscurecida por la absorción debida a la materia intermedia. Sin embargo, si eso sucediera, la materia intermedia se calentaría, con el tiempo, hasta que iluminara de forma tan brillante como las estrellas. La única manera de evitar la conclusión de que todo el cielo nocturno debería de ser tan brillante como la superficie del Sol sería suponer que las estrellas no han estado iluminando desde siempre, sino que se encendieron en un determinado instante pasado finito. En este caso, la materia absorbente podría no estar caliente todavía, o la luz de las estrellas distantes podría no habernos alcanzado aún. Y esto nos conduciría a la cuestión de qué podría haber causado el hecho de que las estrellas se hubieran encendido por primera vez.
El principio del universo había sido discutido, desde luego, mucho antes de esto. De acuerdo con distintas cosmologías primitivas y con la tradición judeo-cristianamusulmana, el universo comenzó en cierto tiempo pasado finito, y no muy distante. Un argumento en favor de un origen tal fue la sensación de que era necesario tener una «Causa Primera» para explicar la existencia del universo. (Dentro del universo, uno siempre explica un acontecimiento como causado por algún otro acontecimiento anterior, pero la existencia del universo en sí, sólo podría ser explicada de esta manera si tuviera un origen.) Otro argumento lo dio san Agustín en su libro La ciudad de Dios. Señalaba que la civilización está progresando y que podemos recordar quién realizó esta hazaña o desarrolló aquella técnica. Así, el hombre, y por lo tanto quizás también el universo, no podía haber existido desde mucho tiempo atrás. San Agustín, de acuerdo con el libro del Génesis, aceptaba una fecha de unos 5.000 años antes de Cristo para la creación del universo. (Es interesante comprobar que esta fecha no está muy lejos del final del último periodo glacial, sobre el 10.000 a.C., que es cuando los arqueólogos suponen que realmente empezó la civilización.)
Aristóteles, y la mayor parte del resto de los filósofos griegos, no era partidario, por el contrario, de la idea de la creación, porque sonaba demasiado a intervención divina. Ellos creían, por consiguiente, que la raza humana y el mundo que la rodea habían existido, y existirían, por siempre. Los antiguos ya habían considerado el argumento descrito arriba acerca del progreso, y lo habían resuelto diciendo que había habido inundaciones periódicas u otros desastres que repetidamente situaban a la raza humana en el principio de la civilización.
Las cuestiones de si el universo tiene un principio en el tiempo y de si está limitado en el espacio fueron posteriormente examinadas de forma extensiva por el filósofo Immanuel Kant en su monumental (y muy oscura) obra, Crítica de la razón pura, publicada en 1781. Él llamó a estas cuestiones antinomias (es decir, contradicciones) de la razón pura, porque le parecía que había argumentos igualmente convincentes para creer tanto en la tesis, que el universo tiene un principio, como en la antítesis, que el universo siempre había existido. Su argumento en favor de la tesis era que si el universo no hubiera tenido un principio, habría habido un período de tiempo infinito anterior a cualquier acontecimiento, lo que él consideraba absurdo. El argumento en pro de la antítesis era que si el universo hubiera tenido un principio, habría habido un período de tiempo infinito anterior a él, y de este modo, ¿por qué habría de empezar el universo en un tiempo particular cualquiera? De hecho, sus razonamientos en favor de la tesis y de la antítesis son realmente el mismo argumento. Ambos están basados en la suposición implícita de que el tiempo continúa hacia atrás indefinidamente, tanto si el universo ha existido desde siempre como si no. Como veremos, el concepto de tiempo no tiene significado antes del comienzo del universo. Esto ya había sido señalado en primer lugar por san Agustín. Cuando se le preguntó: ¿Qué hacía Dios antes de que creara el universo?, Agustín no respondió: estaba preparando el infierno para aquellos que preguntaran tales cuestiones. En su lugar, dijo que el tiempo era una propiedad del universo que Dios había creado, y que el tiempo no existía con anterioridad al principio del universo.
Cuando la mayor parte de la gente creía en un universo esencialmente estático e inmóvil, la pregunta de si éste tenía, o no, un principio era realmente una cuestión de carácter metafísico o teológico. Se podían explicar igualmente bien todas las observaciones tanto con la teoría de que el universo siempre había existido, como con la teoría de que había sido puesto en funcionamiento en un determinado tiempo finito, de tal forma que pareciera como si hubiera existido desde siempre. Pero, en 1929, Edwin Hubble hizo la observación crucial de que, donde quiera que uno mire, las galaxias distantes se están alejando de nosotros. O en otras palabras, el universo se está expandiendo. Esto significa que en épocas anteriores los objetos deberían de haber estado más juntos entre sí. De hecho, parece ser que hubo un tiempo, hace unos diez o veinte mil millones de años, en que todos los objetos estaban en el mismo lugar exactamente, y en el que, por lo tanto, la densidad del universo era infinita. Fue dicho descubrimiento el que finalmente llevó la cuestión del principio del universo a los dominios de la ciencia.
Las observaciones de Hubble sugerían que hubo un tiempo, llamado el big bang [gran explosión o explosión primordial], en que el universo era infinitesimalmente pequeño e infinitamente denso. Bajo tales condiciones, todas las leyes de la ciencia, y, por tanto, toda capacidad de predicción del futuro, se desmoronarían. Si hubiera habido acontecimientos anteriores a este no podrían afectar de ninguna manera a lo que ocurre en el presente. Su existencia podría ser ignorada, ya que ello no extrañaría consecuencias observables. Uno podría decir que el tiempo tiene su origen en el big bang, en el sentido de que los tiempos anteriores simplemente no estarían definidos. Es señalar que este principio del tiempo es radicalmente diferente de aquellos previamente considerados. En un universo inmóvil, un principio del tiempo es algo que ha de ser impuesto por un ser externo al universo; no existe la necesidad de un principio. Uno puede imaginarse que Dios creó el universo en, textualmente, cualquier instante de tiempo. Por el contrario, si el universo se está expandiendo, pueden existir poderosas razones físicas para que tenga que haber un principio. Uno aún se podría imaginar que Dios creó el universo en el instante del big bang, pero no tendría sentido suponer que el universo hubiese sido creado antes del big bang. ¡Universo en expansión no excluye la existencia de un creador, pero sí establece límites sobre cuándo éste pudo haber llevado a cabo su misión!
Para poder analizar la naturaleza del universo, y poder discutir cuestiones tales como si ha habido un principio o si habrá un final, es necesario tener claro lo que es una teoría científica. Consideremos aquí un punto de vista ingenuo, en el que una teoría es simplemente un modelo del universo, o de una parte de él, y un conjunto de reglas que relacionan las magnitudes del modelo con las observaciones que realizamos. Esto sólo existe en nuestras mentes, y no tiene ninguna otra realidad (cualquiera que sea lo que esto pueda significar). Una teoría es una buena teoría siempre que satisfaga dos requisitos: debe describir con precisión un amplio conjunto de observaciones sobre la base de un modelo que contenga sólo unos pocos parámetros arbitrarios, y debe ser capaz de predecir positivamente los resultados de observaciones futuras. Por ejemplo, la teoría de Aristóteles de que todo estaba constituido por cuatro elementos, tierra, aire, fuego y agua, era lo suficientemente simple como para ser cualificada como tal, pero fallaba en que no realizaba ninguna predicción concreta. Por el contrario, la teoría de la gravedad de Newton estaba basada en un modelo incluso más simple, en el que los cuerpos se atraían entre sí con una fuerza proporcional a una cantidad llamada masa e inversamente proporcional al cuadrado de la distancia entre ellos, a pesar de lo cual era capaz de predecir el movimiento del Sol, la Luna y los planetas con un alto grado de precisión.
Cualquier teoría física es siempre provisional, en el sentido de que es sólo una hipótesis: nunca se puede probar. A pesar de que los resultados de los experimentos concuerden muchas veces con la teoría, nunca podremos estar seguros de que la próxima vez el resultado no vaya a contradecirla. Sin embargo, se puede rechazar una teoría en cuanto se encuentre una única observación que contradiga sus predicciones. Como ha subrayado el filósofo de la ciencia Karl Popper, una buena teoría está caracterizada por el hecho de predecir un gran número de resultados que en principio pueden ser refutados o invalidados por la observación. Cada vez que se comprueba que un nuevo experimento está de acuerdo con las predicciones, la teoría sobrevive y nuestra confianza en ella aumenta. Pero si por el contrario se realiza alguna vez una nueva observación que contradiga la teoría, tendremos que abandonarla o modificarla.
O al menos esto es lo que se supone que debe suceder, aunque uno siempre puede cuestionar la competencia de la persona que realizó la observación.
En la práctica, lo que sucede es que se construye una nueva teoría que en realidad es una extensión de la teoría original. Por ejemplo, observaciones tremendamente precisas del planeta Mercurio revelan una pequeña diferencia entre su movimiento y las predicciones de la teoría de la gravedad de Newton. La teoría de la relatividad general de Einstein predecía un movimiento de Mercurio ligeramente distinto del de la teoría de Newton. El hecho de que las predicciones de Einstein se ajustaran a las observaciones, mientras que las de Newton no lo hacían, fue una de las confirmaciones cruciales de la nueva teoría. Sin embargo, seguimos usando la teoría de Newton para todos los propósitos prácticos ya que las diferencias entre sus predicciones y las de la relatividad general son muy pequeñas en las situaciones que normalmente nos incumben. (¡La teoría de Newton también posee la gran ventaja de ser mucho más simple y manejable que la de Einstein!)
El objetivo final de la ciencia es el proporcionar una única que describa correctamente todo el universo. Sin embargo, el método que la mayoría de los científicos siguen en realidad es el de separar el problema en dos partes. Primero, están las leyes que nos dicen cómo cambia el universo con el tiempo. (Si conocemos cómo es el universo en un instante dado, estas leves físicas nos dirán cómo será el universo en cualquier otro posterior.) Segundo, está la cuestión del estado inicial del universo. Algunas personas creen que la ciencia se debería ocupar únicamente de la primera parte: consideran el tema de la situación inicial del universo como objeto de la metafísica o la religión. Ellos argumentarían que Dios, al ser omnipotente, podría haber iniciado el universo de la manera que más le hubiera gustado. Puede ser que sí, pero en ese caso él también haberlo hecho evolucionar de un modo totalmente arbitrario. En cambio, parece ser que eligió hacerlo evolucionar de una manera muy regular siguiendo ciertas leyes. Resulta, así pues, igualmente razonable suponer que también hay leyes que gobiernan el estado inicial.
Es muy difícil construir una única teoría capaz de describir todo el universo. En vez de ello, nos vemos forzados, de momento, a dividir el problema en varias partes, inventando un cierto número de teorías parciales. Cada una de estas teorías parciales describe y predice una cierta clase restringida de observaciones, despreciando los efectos de otras cantidades, o representando éstas por simples conjuntos de números. Puede ocurrir que esta aproximación sea completamente errónea. Si todo en el universo depende de absolutamente todo el resto de él de una manera fundamental, podría resultar imposible acercarse a una solución completa investigando partes aisladas del problema. Sin embargo, este es ciertamente el modo en que hemos progresado en el pasado. El ejemplo clásico es de nuevo la teoría de la gravedad de Newton, la cual nos dice que la fuerza gravitacional entre dos cuerpos depende únicamente de un número asociado a cada cuerpo, su masa, siendo por lo demás independiente del tipo de sustancia que forma el cuerpo. Así, no se necesita tener una teoría de la estructura y constitución del Sol y los planetas para poder determinar sus órbitas.
Los científicos actuales describen el universo a través de dos teorías parciales fundamentales: la teoría de la relatividad general y la mecánica cuántica. Ellas constituyen el gran logro intelectual de la primera mitad de este siglo. La teoría de la relatividad general describe la fuerza de la gravedad y la estructura a gran escala del universo, es decir, la estructura a escalas que van desde sólo unos pocos kilómetros hasta un billón de billones (un 1 con veinticuatro ceros detrás) de kilómetros, el tamaño del universo observable. La mecánica cuántica, por el contrario, se ocupa de los fenómenos a escalas extremadamente pequeñas, tales como una billonésima de centímetro. Desafortunadamente, sin embargo, se sabe que estas dos teorías son inconsistentes entre sí: ambas no pueden ser correctas a la vez. Uno de los mayores esfuerzos de la física actual, y el tema principal de este libro, es la búsqueda de una nueva teoría que incorpore a las dos anteriores: una teoría cuántica de la gravedad. Aún no se dispone de tal teoría, y para ello todavía puede quedar un largo camino por recorrer, pero sí se conocen muchas de las propiedades que debe poseer. En capítulos posteriores veremos que ya se sabe relativamente bastante acerca de las predicciones que debe hacer una teoría cuántica de la gravedad.
Si se admite entonces que el universo no es arbitrario, sino que está gobernado por ciertas leyes bien definidas, habrá que combinar al final las teorías parciales en una teoría unificada completa que describirá todos los fenómenos del universo. Existe, no obstante, una paradoja fundamental en nuestra búsqueda de esta teoría unificada completa. Las ideas anteriormente perfiladas sobre las teorías científicas suponen que somos seres racionales, libres para observar el universo como nos plazca y para extraer deducciones lógicas de lo que veamos.
En tal esquema parece razonable suponer que podríamos continuar progresando indefinidamente, acercándonos cada vez más a las leyes que gobiernan el universo. Pero si realmente existiera una teoría unificada completa, ésta también determinaría presumiblemente nuestras acciones. ¡Así la teoría misma determinaría el resultado de nuestra búsqueda de ella! ¿Y por qué razón debería determinar que llegáramos a las verdaderas conclusiones a partir de la evidencia que nos presenta? ¿Es que no podría determinar igualmente bien que extrajéramos conclusiones erróneas? ¿O incluso que no extrajéramos ninguna conclusión en absoluto?
La única respuesta que puedo dar a este problema se basa en el principio de la selección natural de Darwin. La idea estriba en que en cualquier población de organismos auto reproductores, habrá variaciones tanto en el material genético como en educación de los diferentes individuos. Estas diferencias supondrán que algunos individuos sean más capaces que otros para extraer las conclusiones correctas acerca del mundo que rodea, y para actuar de acuerdo con ellas. Dichos individuos tendrán más posibilidades de sobrevivir y reproducirse, de forma que su esquema mental y de conducta acabará imponiéndose. En el pasado ha sido cierto que lo que llamamos inteligencia y descubrimiento científico han supuesto una ventaja en el aspecto de la supervivencia. No es totalmente evidente que esto tenga que seguir siendo así: nuestros descubrimientos científicos podrían destruirnos a todos perfectamente, e, incluso si no lo hacen, una teoría unificada completa no tiene por qué suponer ningún cambio en lo concerniente a nuestras posibilidades de supervivencia. Sin embargo, dado que el universo ha evolucionado de un modo regular, podríamos esperar que las capacidades de razonamiento que la selección natural nos ha dado sigan siendo válidas en nuestra búsqueda de una teoría unificada completa, y no nos conduzcan a conclusiones erróneas.
Dado que las teorías que ya poseemos son suficientes para realizar predicciones exactas de todos los fenómenos naturales, excepto de los más extremos, nuestra búsqueda de la teoría definitiva del universo parece difícil de justificar desde un punto de vista práctico. (Es interesante señalar, sin embargo, que argumentos similares podrían haberse usado en contra de la teoría de la relatividad y de la mecánica cuántica, las cuales nos han dado la energía nuclear y la revolución de la microelectrónica.) Así pues, el descubrimiento de una teoría unificada completa puede no ayudar a la supervivencia de nuestra especie. Puede incluso no afectar a nuestro modo de vida. Pero siempre, desde el origen de la civilización, la gente no se ha contentado con ver los acontecimientos como desconectados e inexplicables. Ha buscado incesantemente un conocimiento del orden subyacente del mundo. Hoy en día, aún seguimos anhelando saber por qué estamos aquí y de dónde venimos. El profundo deseo de conocimiento de la humanidad es justificación suficiente para continuar nuestra búsqueda. Y ésta no cesará hasta que poseamos una descripción completa del universo en el que vivimos.

Bibliografia: Brebe Historia del Tiempo-Stephen Hawking

La Física


Es una ciencia natural que estudia las propiedades del espacio, la materia y la energía asi como sus interacciones.

La física no es sólo una ciencia teórica, es también una ciencia experimental. Como toda ciencia, busca que sus conclusiones puedan ser verificables mediante experimentos y que la teoría pueda realizar predicciones de experimentos futuros. Dada la amplitud del campo de estudio de la física, así como su desarrollo histórico en relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la quimica, labiología y la electrónica, además de explicar sus fenómenos.